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ABSTRACT

N
=/ The flow of the classical linearly viscous fluid between two infinite

parallel planes rotating with constant (but different) angular velocities
about a common axis has received a great deal of attention during the past 60

/"“‘ —_ ,”N
years (cf. Parter [12])! However, until recently the emphasis has been on

N
solutions which are axi-symmetric. Recently, Berker {3] in his study of the

flow between parallel planes. rotating with the same constant angular

velocities about a common axis exhibited a one parameter family of solutions
s rlrerS

‘}"i 2
only one of which is axi-symmetric. In this study,.he exhibit the existence

2./

o
of a one parameter family of solutions (for Jlarge viscosities) when the
planes are rotating with constant but different angular velocities about a

common axis or about non-coincident axes.
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\
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SIGNIFICANCE AND EXPLANATION

The flow between parallel planes rotating with constant (but different)
angular velocities about a common axis was first studied by Batchelor [2]
ingtigated by an earlier study of von Karman (9] in 1923 and it has been the
object of conaiderabie analysis ever since then. The Karman assumptions,
which has always been employed in studying the problem, leads to solutions
which are axi-symmetric. 1In this study we show that the classical solutions
are imbedded in a one parameter family of solutions which are basically non-

symmetric and hence the classical golutions are not "isolated” or "stable".

! . These results which seem to arise due to the unboundedness of the flow domain
lead one to question the meaning and validity of the study of the above

b boundary value problem. Similar one parameter family of solutions are shown

to exist in the case of the flow of rotating planes of constant but differing

angular velocities about non-coincident axes. Accession For
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REMARKS ON THE FLOW BETWEEN TWO

PARALLEL ROTATING PLATES

Seymour V. Parter and K. R. Rajagopal

Introduction

Let Il1 and 112 be two infinite planes parallel to the (x,y) plane, say n, is
the plane z = -1 while ll2 is the plane z = 1. Let a >0 be a fixed constant and
suppose that ll‘ rotates about a point (x = 0, y = -a/2, z = -1) with constant angular
velocity 0_1 while "2 rotates about the point (x=0, y = +a/2, £z = 1) with constant
angular velocity 0‘_1. We suppose a classical incompressible fluid fills the infinite
space between these planes and we seek steady state solutions of the Navier-Stokes

equation which describe the fluid flow.

13 Q.
l

Ie——a—)

.lﬂ @,

Finally, we make the basic assumption that

1.1) U'- -H(g),

that is, the component of velocity in the 2z direction is a function of z alone.

If a =0 and we also assume that the flow is axi-symmetric then the basic theory of

von Karman [9] and Batchelor [2) leads to the following conclusions:

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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1
1.2) u =Xm(n) r = (x24y? )2
r- 2
z
1.3) ue =3 G(2)

where the functions <G(z),H(z)> are solutions of the boundary-value problea

1.4a) " +HE' 4G =0, -1 <z <1
1.4b) €G'' + HG' - H'G =0, -1 <2< 1

and

1.5a) H(-1,€¢) = H(1,e) = 0 (no penetration)
1.5h) H'(=-1,¢) = H'(1,e) = 0 (no slip)
1.5¢) G(-1,e) = 20_ G(1,e) = 28,

where the positive parameter € > 0 is related to the bulk viscosity

This boundary value problem has been studied at great length There are many
numerical studies and many formal asymptotic studies. There are also rigorous existence
theorems

(1) for € > 1 by Hastings [8] and Elcrat (6],

(11) for 0_1 - -9” $# 0 and all € > 0 by McLeod and Parter (11],

(111) for 0 < € << 1 by Kreiss and Parter [10].
The recent survey article [12] contains a reasonably up-to-date discussion of this
problem.

When 0_1 - an # 0 there is one special sclution (not the only solution-see {3]):
the rigid body rotation given by
1.6) H(gz,€) £ 0, G(z,e) = 20

-1
It is not difficult to verify ([5), [18]) that this solution is "stable” and "isolated"

relative to the von Karman equations (1.4), (1.5). By "isolated™ we mean there is a
neighborhood of this solution wherein there are no other solutions, and by “"stable" we
mean there is no bifurcation from this solution, in particular the linearigzed problem at
this solution is non-singular. On the other hand, Berker {3]) has constructed a one
parameter family of solutions to the general steady Navier-Stokes equation which includes

the rigid body motion. The rigid body motion is the only axisymmetric solution that

-2-




belongs to Berker's [3] family. In Cartesian coordinates his solution takes the form (we

have gset 4_, =R, = 1).

+1

1.7) Ux = -[y-g(2)], Uy = [x-£(z)], IJz =0

where
rea) g2 = ¢ (EHU pin-pan - X xm-xom},
L {x(Z) [$(z)=¢(1)] +1—-L;—1_) [x(z)'X(‘)]}l

1.8b) g(z)
with

1.9a) ¢(z) = coshmz * cosmz,
1.9b) x(z) = ginhmz * sinmz,

- %
1.9¢) n (Ze)

1.943) A [1-0(‘!)]2 + [x(1)]2 = (<:oshm-c¢:>s|n)2

while ¢ 1is an arbitrary positive constant. Observe that (1.7) shows that this solution i
satisfies the basic ansatz (1.1).

The case a %# 0 and 9_1 = Q = 1 has relevance to the flow occurring in the

+1
orthogonal rheometer, an instrument that is employed in determining the material moduli
which characterize non-Newtonian fluids. Recently, Rajagopal [13] has studied the flow of
general simple fluids in such a domain and Rajagopal and Gupta [15], and Rajagopal and
Wineman (17] have established exact solutions to the problem for certain non-Newtonian
tluidut Rajagopal and Gupta [16] have also eatablished a one parameter family of exact
solution for an incompressible homogeneous fluid of second grade when a = 0 and
Ay =y =0

When a =0 and 2 , =8, ,, the solution corresponding to the usual Karman ansatz
leads to exactly one of the solutions in Berker's (3] one parameter family, namely the
rigid motion which is axi-symmetric. In the case a # 0, and a_‘ L] nﬂ, an exact

solution has been obtained for the classical incompressible fluid by Abbot and Walters

More recently, Goddard [7] has also established results which are similar to those in
[13]).




—

[1]. The existence of such a solution is implied in an earlier analysis of Berker [4]).
This motivates us to look for a more general class of solutions to the Karman problem (and
to the corresponding problem when a # 0) which would reduce to the class of non-
axisymmetric solutions exhibited by Berker [3] Thus, we seek a solution - for classical

incompressible fluids -~ which, in Cartesian coordinates - take the form

x G(z)
1100 o =Fare - S3y 4 gte)
1.00) o o=fEttn)+ S2) o - (2

1.10¢) l!z = -H(z).

In cylindrical coordinates this velocity field takes the form

1.11a) v - § H'(z) + g(z) cos © - £(z) sin ©,
1.11b) A -%’c(z) - g{z) sin © - £(z) cos O,
1.11¢) V_ = -H(z) .

4

Obgerve that, if H =0 and G = 20 we have a velocity field of the form described by
Berker. And, if £ = g = 0 we have a velocity field of the form described by von Karman.
As we show in section 2, there is a solution of the steady state Navier-Stokes

equations of the form (1.10) [or (1.11)] if and only if the functions H(z), G(z), g(z),

£(z) are solutions of the boundary-value problem '
1.12a) enl’ +ER'T 4660 =0, -1 <z €1

1.12b) eG'' + HG' -~ H'G =0, ~-1< g <1

1.13a) €' +HE' +HhE'e -hA''E + K (Gg) = 0

1.13b) €g'' + Hg'' +hn'g' -H" g -TH(GE)' =0

1.14a) H(-1,¢) = H(1,e¢) = 0, (no penetration),

1.14b) H'(-1,¢) = H'(1,e) =0, (no slip),

1.14¢) G(~1,¢e) = 20_‘. G(1,¢€¢) = 2"1‘_1

1.1%) £(-1,¢c) = £(1,e) = 0, gl(-1,¢) = -.n_‘/z, g(1,e) = anﬂ/z .

¥We note that equations (1.12) with boundary conditions (1.14) are exactly the
nonlinear von Karman equations for axially symmetric swirling flow for functions

< H(s,c), G(z,¢) > while the equations (1.13) with boundary conditions (1.15) are linear

| -4=
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equations for < f(z,¢), g(z,e) > with coefficients depending on < H(z,e), G(z,€) >
which reflect the asymmetry and the possible displacement of the centers of rotation of
the bounding planes. Moreover, given <H(z,e), G(z,€)> the
of two third order equations with only four boundary conditions. Whenever, there is a
solution of the von Karman equations one can ask two questions:

(1) In the case when a = 0, is the axi-symmetric flow imbedded in a continuous one
parameter family of more general solutions?

(ii) vwhen a ¢ 0, does this axi-symmetric flow form the basis for a one parameter
family of solutions of the problem for rotations about different centers?
In case (1) this is a homogeneous underdetermined system and the answer is yes! We need
merely cofsider the additional condition
1.16) £'(=1) = g'(~1) = 0.
If this augmented homogeneous problem has a non-trivial solution
<f(z,c), gl{z,e)> ¢ <0,0>, then <Lf(z,c), Lgl(z,€)> is also a solution for every real
number £. On the other hand, if the system (1.13), (1.15), (1.16) does not have a
nontrivial solutions; then the problem given by (1.13), (1.15) and
1.17) £'(-1) = ¢, g'(=1) =0
7ields a unique solution <f(z,¢,L), g(z,c,L)> of the form

<f(z,e,%), glz,e,0)> = <tf(z,c,1), Rglz,€,1)>.

This simple result has the following important consequence. In the classical case of two
infinite parallel planes rotating about a common axis, (i.e., a - 0) whenever there is a
solution of the von Karman equations (12), (14), this axi-gymmetric flow is imbedded in a
one-parameter family of solutions of the full Navier-Stokes equationa. Thus, despite the
intense interest in the von Karman problem within the class of all solutions of the
Navier-stokes equations, these special solutions are "unstable”. While it seems likely
that a similar simple argument settles the matter for case (ii), it is not apparent.

In either case one can ask a more subtle question: can we find a family

<f(z,e,l), g(z,e,2)> which is continuous in both € and L and (at the same time) has

5=




the geometric significance of the Berker solution for the special case 0_1 = nﬂ ¢ 0?
In other words, can we find solutions of (1.12), (1.13), (1.14), (1.15) and
1.18) g(0,¢e,2) = 0, £(0,¢e,2) = 2.
Since the system (1.13), (1.15) is linear, the answer is 'yes' for problem (i) if and
only if it is also 'yes' for problem (ii).
In section 3 we answer these questions in the affirmative for large €. While this

result is an immediate consequence of the implicit function theorem (applied at ¢ = »)

we will give a complete proof.

2. Equations of Motion

In this discussion we follow the outline of the argument given in [12, section 2]. A
velocity field of the form (1.10) satisfies
2.1 aiv U =5 u' (z) +KhH' (2) -~ H'(2) = 0.
Thus, the basic constraint of the Navier-Stokes equations is satisfied. We now turn to
the equation
2.2) udu - pueVu = Vp
where u denotes the viscosity, p the density, and p is the pressure. We eliminate

the pressure by taking the curl of both sides of (2.2) and obtain

2.3) uAw = p(u) = 0
where
2.3b) w = curl U.

A detailed calculation now yields

re e L] LN
2.4) M:--;(%uiv+§c --2“?-")+1{-2’5u1v-§c +§'“}+5(G"}

while

1y ‘B’
Jtem qetm)

WwxUs= -.j; (.;. [(GH')'~ (G'H)"'] _% [GG' + HA'''] + [(j%)' < 2

-6 .
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(G_:l'* (ﬂ')'_(g'!;)' 1

2.5) v3{-Fwee +my + ¥ gemr - @+ e

+k {cH -ue'} .

On equating the coefficients of k in (2.3a) we obtain
2.6a) %G" + BG' - H'G = 0.
On equating the coefficients of i x we obtain
%G"' + (HG')' - (H'G)' =0
which also follows from (2 6a). On equating the coefficients of i y we obtain
2.6b) Bl v mrtr + o6t = 0.
Finally, the zeroth order terms in the coefficient of i yield
2.6c) %f"' + (me') =% ') +% (Gg)' = 0.
The coefficients of i{x, jy and j yield the final equation
2.6d) %g"' + (2g")" -5 (u'g)* +'K (GE)* = 0.

Thus we have established the equations (1.12) and (1.13) with
)}

e=<.
¥We now turn to the boundary conditions. For our immediate purposes it would be

sufficient to impose the conditions (t.4) and (1.5) and observe that the velocity field
(1.10) now satisfies the steady-state Navier-Stokes equations and the boundary conditions
of our problem. However, it is somewhat more satisfying to proceed as follows. Equation
(1.11c) and the "no penetration” condition implies that
2.7a) H(-1,e) = H(1,e) = O
Equation (1.11b) and the boundary conditions

a
Ve(!':e,t‘l) - (tfz') 9*1

yleld
1
Lim =V (r,0,21) = 0 . =15G(21).
rom T O ’ 1
Hence
2.7b) G(-1,¢) = 2a_,, G(1,€) =2 Q..

et 2t i

D N R
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Thus, we have obtained the boundary conditions (1.14). Now, using (1.11b) and letting

r * 0 with a judicious choice of © we obtain the boundary conditions (1.15).

3. Existence for large ¢ >>1

In this section we present what is easentially a standard argqument for regular
perturbation problems. The argument is given in some detail because we wish to emphasize
the following facts.

(1) There is an eo > 1 and, for all ¢ > <, there is a solution of the
von Karman problem (1.4), (1.5). Moreover, this solution is continuous in €. ﬁence,
there is a curve of solutions and there is no local bifurcation of solutions of the von
Karman equation from this curve. Again, within the set of solutions of the . h\rman
equations, for fixed ¢ > eo, each of thege solutions is isolated.

(1i) Nevertheless, in this same range of ¢ there is a solution of full system
(1.12)=(1.15): a one parameter family of solutions <H(x,€), G(x,e), f(x,e ) X, E,R)>
which includes (for £ = 0) the axi~symmetric von Xarman solution. Moreover, if

€ and ¢t are both fixed, this solution is an isolated stable solution. Of course,
with a > 0 these solutions provide a one parameter family of solutions of the problem of
rotation about different centers.

Our first goal is to show that in the case of the von Karman equations a relatively
simple Picard iteration scheme converges for € >>1 and - in the nature of things, the
solutions so obtained are continuous in R = 1/e€.

Definition: Let f @& Ck[-1,1] ., X 0. Then

(3)

k
s, = 7 max(le'(x): -1 < x< 1)

LI

Lesma 3.1: Consider the two boundary value problema:

3.1a) o) w g, c1 < x <1




3.1b) o(s1) = 9'(21) = 0,
3.2a) Vv=g -1<x<&1,
3.2p) vi-1) =20, w(1) =28, .

There is a constant xo > 1 such that
3.3a) tol, < K Ifl
4 o (]
. +
3.3b) lvl2 < xollglo + 2|n_‘| 2|n+1|]
proof: Direct integration.

Let Q_, and 4., be given. Let

3.4a) g = 2ox°[|n_1|+|n”|1 +1,

1 1
3.4b) R = SR "6k o

o
Let
3.5a) H =0,
[+]

- (x+1) -

3.5b) G, 2 19 4+ (Q,4-8_4)1

and consider the iterative scheme

3 6 ) Iv [N 1]
. - - +
a HK+1 R[Hkﬂ " Gka]
L]
3.6b) nk”(ﬂ) = ﬂk”(tn =0
» L] L]
; .7 = -
; 3.7a) Gk+1 R[Hka ﬂka]
! 3.7b) Gk*‘l(-” = 29_1, Gk+‘|(” - 29+1
' i Lemma 3.2: If
! 3.8a) m1, <o 16, <o
i . Then
‘ K
. ) 3.8b) lﬂk+1l‘ <c and 1 leﬂl2 < 0.
! '?' Proof: From the definition of X, we have
) | ‘
L
| ] 2K
4 2 . __9° -l
.[_ 3.9s) Illkﬂl‘ < 2K°Ro < '6!00 d2 i <0
" r
‘.
! -9

'i\—*_ T T e T T

——

‘¢

)

i
A

A g e vy <y € .
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and

That is

3.9b)

Lesma 3.3:

3.10)
Then, for
3.11)

Proof:

Thus

(3.12a)

And

3.12p)

2
16,1, < K [2Ro7+2]8_,[4218,,1]

2K 2

©
< 13i;5 o + 2 K°[| Q_1|*|ﬂ*1|] .

Suppose

lukld <o, I Gk I2 <o, k=0, 1, ...

k> 1

1 + <1
(1B, B 1+ 16, G 1)) <V (B -8, 1 +16, G, 1))

w
(uk+1_nk) - 'R((Hk-ﬂ H'!l + uk ' ulll)

k-1

) + 6, G'-c, _.)}

k6% -1 Ck-1

k k-1

4
1§ B < 2KR,- {1 - _ 1, + 16, LY

1
=g Um a1, + 16 - 6 41}

4 1
B <g (g -8 0, + 16 Gk_1|2} .

G, ,,-G,) =R [(R:-H!_ )G, + (G G, )&,

k1 K Kk k-1 k=1
e .
(B -B )G, -(GI-G)_ )8, 1.
1G,,,G,1, < 2K Ro(WH -8 _ 4 + 16, - L

1
<g i - nk_il‘ + 1 Gx'Gk-1'z]

-10-
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Adding (3.12a) and (3.12b) gives the desired result

1 1
Theorem 3.1: If R = c < Ro - 16!00

o =20 k(8 | + 18,1] + 1.

Then the iterative procedure (3.5)-(3.7) converges to an isolated solution
< H(x,€), G(x,£)> which is continuous in € for ¢ >-I!l. .
Proof: The proof is now a standard argument based on theoeuintu of lemma 3.2 and
lema 3.3.
We now turn to the linear equations (1.13) with boundary conditions (1.15).
Lemma 3.4: Congider the multi-point problem
3.13a) v''' s p, -1<x¢<1 ,
3.13b) v(=1) = a, v(1) = B, v(0) = c.
Let {(x) be the triple integral of F, i,e ,

x Yy t
(x) =[] dy [ at [ r(s)ds.

Then, the solution of (3.13a), (3.13b)-;| giv;:l ;;
30400 i) =A +ate) + 2 en? e 0
where

3.14p a=2c-2a-Yn-2(0+% ()
3.14¢) 8 = (B4A=2C) + 2 (0) -~ (1)

Proof: direct verification.
Corollary 3.4: There is a constant Ky such that
3.15) jvl <x,[|n|+|n|+|c|+lr|°] .
Given <H(x,e), G(x,e) > for € > € let us consider the iterative procedure
[ - 1 - » .1
3.16a) t,";1 4 R( (ng)"" /za'zk E!k /zll'f,"],
3.16b) £(=1) = 0 s £(0)= g, £(1) =0
3.17a)  grii= RI(GE, ) +Vm"g -ngr -V B'g )
3.18a) g{-1) = --n_1/2 , g(0) =0, g(1) = 10”/2.
Quite clearly, the arguments above show that there is an

c‘ [}

-19=

.‘: '

>¢_ and, for all ¢ > €, H €, this multi-point problem possesses & unique solution
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which is continuous in ¢ and ¢. Thus we have verified all the opening remarks of this

section.

4. Remarks
We conclude this analysis by making a few observations on the significance of the
result established in the previous section.

We have studied special solutions of the Navier-Stokes equations for a fluiad
contained with two infinite parallel planes each rotating with a constant angular velocity
nk(k =+1) . The centers of rotation may or may not lie on the same axis perpendicular

to the planes.

In either case we are led to a system of ordinary differential equations which
contain (as a subset) the classical equations of von Karman [9) and Batchelor (2] for
special axi-symmetric flow about a common axis. In particular, in this classical case

studied by von Karman and Bathelor, if there are such special solutions, they are never

isolated solutions when considered with the scope of the full Navier-Stokes esquations. In

the case of "off-centered” rotation there are many unanswered questions. However, we have
shown that (contrary to most intuitive ideas) in the case of "large" viscosity, there are
solutions and they are never isolated. While the underlying basis for these anomalies is
not completely understood, we believe it is related to the fact that in this unbounded
domain the velocities at large r are great.

It is also worth observing that similar results can be established in the case of the
flow of a Newtonian fluid between rotating porous disks and ¢ > > 1, In this case, the
only change in the problem is in the boundary condition (1.14a). It is an easy matter to

modify the arguments of Section 3.

SVP; KRR/ jgb
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